Random surfaces on hard spheres

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 221463
(http://iopscience.iop.org/0305-4470/22/9/032)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 16:02

Please note that terms and conditions apply.

COMMENT

Random surfaces on hard spheres \dagger

M A F Gomes, I J S Braga and C A F Castro
Departamento de Física, Universidade Federal de Pernambuco, 50739 Recife PE, Brazil

Received 12 May 1988, in final form 9 January 1989

Abstract

The relation between mass, M, and size, R, for self-avoiding random surfaces enclosing a hard sphere of radius r is examined. It is suggested that $M \sim R^{2} F[(R-r) / r]$, with F proportional to the surface roughness. These functions are investigated using experimental data and theoretical arguments.

Recently, there has been great theoretical interest in the study of the properties of self-avoiding random surfaces [1,2]. It seems to have been established from experiments [3] and computer simulations [4] that the average size or radius of gyration R of these surfaces scales with the linear size L of the manifold as $R \sim L^{n}$, with $n=$ 0.8 ± 0.05. Then, the unfolded area or the mass M of these objects scales with the radius as $M \sim L^{2} \sim R^{2 / n}=R^{D}$, where the fractal dimension D assumes the value $D=2.50$ with typical fluctuations of 6%. These numerical results for D are in agreement with a Flory-type argument which predicts $D_{\text {Flory }}=\frac{5}{2}$ [2].

In this comment we examine the behaviour of self-avoiding random surfaces on hard spheres for the first time. We started with 938 square sheets of paper of different edge L and proceed to crumple them in such a way as to enclose completely rigid spheres of radii $r_{1}=0.60 \mathrm{~cm}, r_{2}=0.85 \mathrm{~cm}, r_{3}=1.28 \mathrm{~cm}, r_{4}=2.71 \mathrm{~cm}$ and $r_{5}=3.33 \mathrm{~cm}$. The ensemble of random surfaces was formed by five groups, comprising: groups 1 and 2 both with 175 crumpled balls (divided into $f_{1}=f_{2}=25$ families of seven balls each) involving, respectively, spheres of radii r_{1} and r_{2} and sizes $L=6,10,15,20,30$, 45 and 66 cm ; group 3 with 294 crumped surfaces (divided in $f_{3}=49$ families of six balls each) involving spheres of radius r_{3} and sizes $L=10,15,20,30,45$ and 66 cm ; and finally groups 4 and 5 , both formed from $f_{4}=f_{5}=49$ families of three balls each involving, respectively, spheres of radii r_{4} and r_{5}. For the last two groups L is limited to $L=35,50$ and 66 cm as a consequence of the maximum size of the paper sheets normally available ($66 \times 96 \mathrm{~cm}$) and the relatively large magnitude of r.

From the theoretical point of view it is reasonable to assume that $M \sim$ $R^{2} F[(R-r) / r]$, where M is the mass or area of the manifold, $R>r$ is the radius of gyration, $0.1 \leqslant[(R-r) / r] \leqslant 6$ in our experiment, and $F(x)$ is a scaling function with the following properties:
(i) $F(x)=1$, for $x \ll 1$, i.e. $M \sim R^{2}$ (which is the mass-size relation for the unfolded Euclidean covering of the hard core);
† This work was supported in part by the Brazilian agencies Financiadora de Estudos e Projetos and Conselho Nacional de Desenvolvimento Científico a Tecnológico
(ii) $F(x) \sim R^{D_{0}-2}$, for $x \gg 1$, i.e. $M \sim R^{D_{0}}$, where D_{0} is the mass-size exponent for random surfaces without a hard core boundary condition. As previously stated D_{0} is typically $2.5 \pm 0.15[3,4]$.

From the experimental data we calculated the surface roughness σ for these surfaces. After picking out at random from the ensemble \sqrt{f}_{i} surfaces associated with a given r and L, we measured for each one of these the external radius R_{k} along five directions taken equally at random. σ is defined as the square root of the variance $(1 / N) \sum_{k=1}^{N}\left(R_{k}-R\right)^{2}$ which is an average over a large number $N=5 \sqrt{f_{i}} \geqslant 25$ of observations of the surface topography. We found that $\sigma(\exp)_{i} \sim\left[\left(R-r_{i}\right) / r_{i}\right]^{\alpha_{1}}$, with $\alpha_{1}=0.56 \pm 0.07, \alpha_{2}=0.6 \pm 0.08, \alpha_{3}=0.64 \pm 0.11$, and $\alpha_{4}=\alpha_{5}=0.7 \pm 0.2$, where the subscripts refer to groups 1 to 5 . It can be shown [5] that the surface roughness for a fractal surface of dimension D and maximum extent L scales as $\sigma \sim L^{(3-D)}$ in the physical space. Then, for a random surface of radius $R, \sigma \sim R^{(D / 2)(3-D)}$ since in this case $L^{2} \sim R^{D}$. We hypothesise in conformity with $\sigma(\exp)$ that for random surfaces involving hard cores, σ scales with $(R-r) / r$ as $\sigma \sim[(R-r) / r]^{(D / 2)(3-D)}$. The fractal dimension D_{i} for the random surfaces of the group i may be estimated if the relation $\alpha_{i}=\left(D_{i} / 2\right)\left(3-D_{i}\right)$ is adopted. The values obtained are then $D_{1}=2.56 \pm 0.07, D_{2}=$ $2.52 \pm 0.08, D_{3}=2.48 \pm 0.11$ and $D_{4}=D_{5}=2.4 \pm 0.22$. These values are physically consistent among themselves (in the sense that D increases when r decreases) and D_{1},

Figure 1. Log-log plot of the mass as a function of $R^{2}\left[\left(R-r_{t}\right) / r_{t}\right]^{\alpha_{t}}, \alpha_{i}=\left(D_{i} / 2\right)\left(3-D_{i}\right)$, as obtained from the experimental data: $r_{1}=0.6 \mathrm{~cm}(O) ; r_{2}=0.85 \mathrm{~cm}(O) ; r_{3}=1.28 \mathrm{~cm}$ $(\Delta) ; r_{4}=2.71 \mathrm{~cm}(\square) ; r_{5}=3.33 \mathrm{~cm}(\nabla)$. The straight lines have slopes equal to the unit with a confidence limit of 95%.
which corresponds to the smallest value of r, is close to the value D_{0} observed for self-avoiding random surfaces without hard cores [3, 4]. Furthermore, the experimental data show a linear scaling of M with $R^{2}[(R-r) / r]^{\alpha}$ for all groups of surfaces studied (figure 1).

The previous results suggest that the function $F(x)$ probably behaves as $F \sim$ $x^{(D / 2)(3-D)}$. Finally, we can check the last scaling relation by using the condition (ii) above as a self-consistent condition, namely that $F \sim[(R-r) / r]^{\left(D_{0} / 2\right)\left(3-D_{0}\right)} \sim R^{D_{0}-2}$, for $[(R-r) / r] \gg 1$. The solution for the exponent D_{0} gives $D_{0}=2.5615 \ldots$ which is, in fact, in good agreement with previous works [3, 4].

References

[1] Maritan A and Stella A 1987 Nucl. Phys. B $280561-75$
[2] Kantor Y, Kardar M and Nelson D R 1987 Phys. Rev. A 35 3056-71
[3] Gomes M A F 1987 J. Phys. A: Math. Gen. 20 L283-4
[4] Kantor Y, Kardar M and Nelson D R 1986 Phys. Rev. Lett. 57 791-4
[5] Feder J 1988 Fractals (New York: Plenum) p 229 ff

