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COMMENT 

Random surfaces on hard spheres? 
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Abstract. The relation between mass, M, and size, R, for self-avoiding random surfaces 
enclosing a hard sphere of radius r is examined. I t  is suggested that M - R * F [ ( R  - r ) / r ] ,  
with F proportional to the surface roughness. These functions are investigated using 
experimental data and theoretical arguments. 

Recently, there has been great theoretical interest in the study of the properties of 
self-avoiding random surfaces [ 1,2]. It seems to have been established from experi- 
ments [3] and computer simulations [4] that the average size or radius of gyration R 
of these surfaces scales with the linear size L of the manifold as R - L", with n = 
0.8*0.05. Then, the unfolded area or the mass M of these objects scales with the 
radius as M - L2 - R2"' = RD,  where the fractal dimension D assumes the value 
D = 2.50 with typical fluctuations of 6%. These numerical results for D are in agreement 
with a Flory-type argument which predicts DFlory = 1 [2]. 

In this comment we examine the behaviour of self-avoiding random surfaces on 
hard spheres for the first time. We started with 938 square sheets of paper of different 
edge L and proceed to crumple them in such a way as to enclose completely rigid 
spheres of radii r ,  = 0.60 cm, rz = 0.85 cm, r3 = 1.28 cm, r4 = 2.71 cm and r5 = 3.33 cm. 
The ensemble of random surfaces was formed by five groups, comprising: groups 1 
and 2 both with 175 crumpled balls (divided into f, = f2 = 25 families of seven balls 
each) involving, respectively, spheres of radii r ,  and r2 and sizes L = 6, 10, 15, 20, 30, 
45 and 66 cm; group 3 with 294 crumped surfaces (divided in f3 = 49 families of six 
balls each) involving spheres of radius r3 and sizes L = 10, 15, 20, 30, 45 and 66 cm; 
and finally groups 4 and 5 ,  both formed from f4 =fs = 49 families of three balls each 
involving, respectively, spheres of radii r4 and r 5 .  For the last two groups L is limited 
to L = 35, 50 and 66 cm as a consequence of the maximum size of the paper sheets 
normally availab'le (66 x 96 cm) and the relatively large magnitude of r. 

From the theoretical point of view it is reasonable to assume that M -  
R 2 F [ ( R  - r ) / r ] ,  where M is the mass or area of the manifold, R > r is the radius of 
gyration, 0.1 G [(  R - r ) / r ]  G 6 in our experiment, and F ( x )  is a scaling function with 
the following properties: 

( i )  F ( x )  -- 1, for x<< 1, i.e. M - R 2  (which is the mass-size relation for the unfolded 
Euclidean covering of the hard core); 
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(ii) F ( x )  - RDo-', for x >> 1, i.e. M - RDo, where Do is the mass-size exponent for 
random surfaces without a hard core boundary condition. As previously stated Do is 
typically 2.5k0.15 [3,4]. 

From the experimental data we calculated the surface roughness u for these surfaces. 
After picking out at random from the ensemble 4 surfaces associated with a given r 
and L, we measured for each one of these the external radius Rk along five directions 
taken equally at random. u is defined as the square root of the variance 
( l /N)  Z,kN,, ( R k  - R)' which is an average over a large number N = 5 8 2 2 5  of 
observations of the surface topography. We found that u(exp), - [ ( R  - r , ) / r , l m t ,  with 
a,=0.56*0.07, a2=0.6*0.08, a,=0.64*0.11, and a4=a,=0.7*0.2, where the sub- 
scripts refer to groups 1 to 5 .  It can be shown [5] that the surface roughness for a 
fractal surface of dimension D and maximum extent L scales as u - L'3-D' in the 
physical space. Then, for a random surface of radius R, U - R'D'2"3-D' since in this 
case L2- RD. We hypothesise in conformity with U(exp) that for random surfaces 
involving hard cores, cr scales with ( R  - r ) /  r as U - [ ( R  - r ) /  r ] 'D '2 ) '3 -D'  . The fractal 
dimension D, for the random surfaces of the group i may be estimated if the relation 
a ,  = (D,/2)(3 - D,)  is adopted. The values obtained are then D, = 2.56* 0.07, D2 = 
2.52 * 0.08, D, = 2.48 * 0.1 1 and D4 = D, = 2.4 * 0.22. These values are physically con- 
sistent among themselves (in the sense that D increases when r decreases) and D , ,  
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Figure 1. Log-log plot of the mass as a function of R 2 [ ( R  - r , ) / r , ] * s ,  a, = ( D , / 2 ) ( 3 - D , ) ,  
as obtained from the experimental data: rl = 0.6 cm (0); r2 = 0.85 cm (0); r3 = 1.28 cm 
( A ) ;  r, = 2.71 cm (0); r5 = 3 .33  cm (0). The straight lines have slopes equal to the unit 
with a confidence limit of 95%. 



Random surfaces on hard spheres 1465 

which corresponds to the smallest value of r, is close to the value Do observed for 
self-avoiding random surfaces without hard cores [ 3 , 4 ] .  Furthermore, the experimental 
data show a linear scaling of M with R 2 [  ( R  - r ) /  rIQ for all groups of surfaces studied 
(figure 1 ) .  

The previous results suggest that the function F ( x )  probably behaves as F -  
x ( ~ ’ * ) ( ~ - ~ ) .  Finally, we can check the last scaling relation by using the condition (ii) 
above as a self-consistent condition, namely that F - [ ( R  - r ) /  r ] (Do’2) (3-Do)  - RDo-*, 
for [( R - r ) / r ]  >> 1. The solution for the exponent Do gives Do = 2.5615 . . . which is, 
in fact, in good agreement with previous works [ 3 , 4 ] .  
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